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Abstract—A refined shell theory is formulated for the elastostatics of long, moderately thick
cylindrical shells in axisymmetric deformation. This theory corresponds to a two-term outer asymp-
totic expansion of the exact solution for small values of the dimensionless shell thickness parameter.
The complexity of the known exact solution for the three-dimensional elasticity problem has
stimulated an interest in thin and thick shell theories to provide accurate approximate solutions in
the shell interior without any reference (or matching) to the inner asymptotic solution. The principal
difficulty in developing a shell theory lies in the determination of an appropriate set of two-
dimensional boundary conditions for the shell solution from the prescribed edge data of the three-
dimensional theory. The derivations of boundary conditions for the thin shell theory and the refined
shell theory constitute a main contribution of this paper. Correct boundary conditions obtained for
the first time include (i} displacement edge conditions for thin shell theory, and (ii) stress and two
types of mixed edge conditions for the refined shell theory. Several applications of the refined theory
are given to show that corrections to the thin shell solution can be important.

1. INTRODUCTION

The elastostatic theory of thin shells is a two-dimensional system of differential equations
and boundary conditions which determines a first approximation for the three-dimensional
elastostatic behavior of thin shell structures. Thin shell theory was originally derived from
elasticity theory with the help of a set of (self-contradictory) assumptions known as the
Kirchhoff-Love hypotheses [see Love (1944) and Wan and Weinitschke (1988) for examples].
Saint-Venant’s principle ts often invoked to justify the adequacy of the thin shell approxi-
mate solution away from the edges of the shell (Love, 1944 ; Timoshenko and Goodier,
1969). It is therefore of fundamental interest in theoretical and applied mechanics to deduce
thin shell theory as a logical first approximation of elasticity theory for the shell interior,
free of ad hoc assumptions and inconsistencies and with the possibility of establishing shell
theories of higher order accuracy. A method for accomplishing this important goal was
developed for the first time by Johnson and Reissner (1958). This method has since become
a standard approach to an asymptotic solution of the three-dimensional elasticity problem
for the interior of the shell away from its edges [see Gol'denveizer (1968), Green
(1962a, b}, Reiss (1960, 1962}, and Johnson (1963)].

In their pioneering work, Johnson and Reissner describe their parametric series expan-
sion method of solution for the three-dimensional boundary value problem by way of the
axisymmetric deformation problem for circular cylindrical shells. The method introduces
suitable scale factors to nondimensionalize stress and displacement variables and thereby
transforms the governing equations of elasticity theory into a dimensionless form which
contains a dimensionless parameter ¢ = 4/2R, the ratio of the half-shell-thickness to the
cylindrical midsurface radius. For thin cylindrical shells, ¢ is a small parameter and para-
metric expansions of the dimensionless stress and displacement variables in powers of ¢ are
appropriate. The relevant differential equations for the leading terms of these expansions

1 The research of this author is supported by NSF Grant DMS-8904845,
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are identical to the thin shell equations for the problem, now obtained without the Kirch-
hoff-Love hypotheses. For this reason, the conventional thin shell theory is also known as
the first approximation shell theory.

Higher order correction terms in the Johnson—Reissner parametric series solution are
found to be determined by the same system of lower dimensional (shell) equations but now
with the previously determined lower order solutions as forcing terms. These higher order
terms provide the thick shell corrections to the thin shell solution. When combined with
the thin shell solution, we have then a more accurate approximate solution in the shell
interior for the three-dimensional elasticity problem needed for thicker shelis.

The thin shell solution or the higher order parametric series solution of Johnson and
Reissner generally cannot be made to fit the edge conditions of the three-dimensional
elasticity problem, prescribed at an end section of a ¢ylindrical shell for example. Johnson
and Reissner acknowledged in the introduction of their paper the need for a supplementary
solution to complete the actual solution of the elasticity problem. However, they chose not
to treat this problem but limit themselves to the restricted class of stress boundary value
problems for which Saint-Venant’s principle applies to individual terms in the parametric
series solution. For these stress boundary value problems, the thin shell solution and irs
higher order corrections are completely determined by the stress resultants and couples of
the prescribed edge stresses. For small values of ¢, the corresponding supplementary solution
is expected to be confined to a narrow layer of the order of the shell thickness adjacent to
the edges of the shell. In that case, the parametric series solution would provide an accurate
approximate solution for the elasticity problem in the interior of the shell ; hence, it is also
called the interior solution of the elasticity problem. The same approach was also adopted
by Johnson (1963) in a later paper on unsymmetric deformation of cylindrical shells. [Note
that the interior solution corresponds to the outer (asymptotic expansion of the exact)
solution in the method of matched asymptotic expansions.]

A method for obtaining the supplementary (Saint-Venant boundary layer) solution
for the stress boundary value problem was developed by Reiss (1960) also by way of
axisymmetric deformations of circular cylindrical shells. In general, Reiss’ results show that
the boundary conditions for the n#th order correction term in the Johnson-Reissner type
parametric series representation for the interior solution require the supplementary bound-
ary layer solution of the (n— 1)th order. The situation is much more complex for problems
with prescribed edge displacements (or mixed stress and displacement edge data). Saint-
Venant’s principle, even if it should apply. is not useful as we do not know the stress
resultants and couples at the edge. Moreover, the Reiss approach requires the simultancous
determination of terms of the same order in both the interior expansions and boundary
layer expansions for problems with prescribed edge displacements. For such problems, even
the thin shell solution, i.e. the leading term interior solution, cannot be obtained by Reiss’
method without knowing the supplementary boundary layer solution for the same problem.

For many problems in applications, we do not need to know the boundary layer
solution explicitly. For these problems, it is important to have a method for obtaining
the interior component of the exact solution, or its various truncated parametric series
approximations, without an explicit determination of any part of the supplementary solution
component. The principal aim of the present paper is to develop such a method by applying
the reciprocal theorem of elasticity in a way similar to our recent approach for the cor-
responding problem for flat plates (Gregory and Wan. 1984, 1985a,b, 1988 ; Lin and Wan,
1988). The extension of the method of decaying residual solution for flat plates to shell
problems requires some finesse since the interior solution itself contains decaying com-
ponents which would be lost by a straightforward application of the technique used in the
flat plate case.

To bring out the essential features of the method of decaying residual solution for shells
and to obtain explicit results for applications, we also consider in this paper axisymmetric
deformation problems of long (and circumferentially complete) circular cylindrical shells.
Our final result will be a two-term outer asymptotic solution which should be useful and
adequate for moderately thick shells. This two-term asymptotic theory in « will be called
the refined shell theory henceforth. To establish this refined shell theory. we will take
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advantage of the availability of explicit exact (eigen-) solutions of the governing equations of
three-dimensional elasticity theory which satisfy the stress free conditions on the cylindrical
surfaces of the shell. Two-term asymptotic approximations accurate to order ¢ will be
obtained from the asymptotic expansions of these exact solutions [and not from the differ-
ential equations of elasticity as in Johnson and Reissner (1958) or Reiss (1960)]. This will
be done for both the interior components (the shell-eigenfunctions) and the boundary layer
components. The latter are the analogue of the Papkovich—Fadle eigenfunctions for a semi-
infinite strip in plane strain elasticity theory and will be called the PF-eigenfunctions.

The two-term asymptotic expressions for the eigenfunctions have a vastly simpler form
than their exact counterparts and can be used to construct an approximate solution for a
prescribed set of end conditions correct to relative order O(g), even in the Saint-Venant
boundary layer. However, unless the O(#) layer part of the solution is of special significance,
the more interesting and important problem is to determine the refined shell theory solution
directly from the prescribed end data without any consideration of the supplementary
boundary layer solution. Needed for this purpose are the appropriate two-dimensional
boundary conditions for the refined shell theory along an edge of the shell for given stress,
displacement or mixed edge data. The derivation of these boundary conditions constitutes
the main contribution of this paper.

Explicit boundary conditions for the refined shell theory are obtained by the method
of decaying residual solution for prescribed stress and mixed conditions at an end of the
circular cylindrical shell. These conditions take a particularly simple and elegant form when
pure stress data are prescribed at an end section of the shell. Johnson and Reissner limited
themselves to stress boundary value problems for which the stress boundary conditions
effectively require the interior solution to have the same stress resultants and couples as
those of the data. Our results justify the appropriateness of these conditions for thin shell
theory. For the refined shell theory, it is appropriate to equate the stress resultants and
couples only when Poisson’s ratio is zero. Thus, Saint-Venant’s principle is of limited
applicability for stress boundary value problems beyond thin shell theory.

For pure displacement end data, we obtain the appropriate boundary conditions
explicitly only for thin shell theory ; these conditions are new to the literature [see Nair and
Reissner (1977, 1978) for related results for the limiting case of transversely inextensible
circular cylindrical shells]. For the refined (or any other thick) shell theory, the appropriate
displacement boundary conditions are determined in terms of the solution of a few canonical
boundary value problems for the same shell. The two-term asymptotic expressions for the
PF-eigenfunctions are needed for the solution of these canonical problems.

Applications of the preceding results to four examples are given in Section 5. They
show that there can be a substantial difference between the thin shell solution and the refined
shell theory solution for a given problem. For displacement end data, the conventional
displacement boundary conditions for thin shell theory are generally inadequate except for
data which vary linearly across the thickness.

In Section 6, we estimate the maximum influence of the refined stress boundary
conditions when only the stress resultants and couples are known at an end section. Strictly
speaking, knowledge of these resultants and couples alone is insufficient and the Of(g)
correction terms could have arbitrarily large coefficients. However, by stipulating physically
reasonable restrictions on the pointwise distribution of the stress data, we are able to obtain
simple and useful bounds on the influence of the refined boundary conditions.

2. THE EXACT THREE-DIMENSIONAL THEORY

2.1. Statement of the problem

We consider in this paper a thick semi-infinite cylindrical shell occupying the region
a<r<b 0<0<2n 220, where r,0, z are cylindrical polar co-ordinates. The shell is
composed of homogeneous, isotropic, linearly elastic material and is subjected to an axially
symmetric loading which gives rise to a small axially symmetric deformation ; the linear
theory of small deformations is assumed with u, = 1,5 = 7,6 = 0 throughout. We shall
suppose that any tractions on the surfaces » = a, b,z > 0 (and also any body force) can be
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removed from the problem by subtracting off appropriate solutions for the infinite cyl-
indrical shell. This reduces the problem for the semi-infinite shell to one in which the
homogeneous conditions

T, =1, =0 (1

hold on r = a, b,z 2 0, while one of the following sets of conditions is prescribed on the
end surfacez =0,a<r < b:

Case A: 17.(r,0,0) =1,.(r), 1.(r,6,0)=1,.(r). (2a)
CaseB: 1.(r,0,0) = 1,.(r), ulr,8,0)=1d.(r). (2b)
Case C:  w.(r,0,0) =a.(r), 1,.(r.0,0)=7.(r). (2¢)
Case D:  u(r,0,0) =a.(r), u,(r,0,0)=1i.U(r). 2d)

Furthermore, by subtracting off a suitable simple tension solution, we can restrict the
prescribed 7..(r) in Cases A, B to satisfy

b
J T..(r)rdr =0, (3)

so that the resultant applied force in the z-direction is zero. In Cases C and D we shall
impose this condition as an additional constraint upon the solution. With this restriction,
it follows from the general theory of Saint-Venant’s principle for cylinders (Horgan and
Knowles, 1983) that as z —» o

(7, 0,z) = O(CWk:) (4)

for some positive constant k, uniformly in r, §. For each of the Cases A to D, the boundary
value problem specified by (1)—(4) has a unique solution for the induced stresses.

2.2. The exact eigenvalues and eigenfunctions
The eigenfunctions appropriate to the above boundary value problems are axially
symmetric equilibrium fields {r,u} defined in the semi-infinite shell which

(i) satisfy the traction free conditions
TVI' = T"Z = O (5)

on r = a, b (while the condition 1,, = 0 is satisfied identically),
(ii) have the z-dependence e~*, where the eigenvalue 4 satisfies Re {1} > 0.

These eigenfunctions were first presented by Prokopov (1949) and we shall complete
and extend Prokopov’s development by also using the Love stress function ¢(r,z) [see
Timoshenko and Goodier (1951)].

As stipulated above, ¢(r, z) has the form

¢(r,z) = (e ™ (6)
and must satisfy
ViVig =0, (7)

where V?is Laplace’s operator in cylindrical co-ordinates with axisymmetry. It follows that
¥ must have the form
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Y = AJo(Ar)+ BrJ(Ar) + CYo(Ar) + DrY (4r), 8)

where J,, Y, are Bessel functions, and A, B, C, D are constants. The conditions (5) imply
that ¢ must satisfy

o . ¢l _ i .. 09
b;{de)-—w}—O, 5{(1_”)V¢‘azl}“0 9, 10)

on r = g and r = b, where v is Poisson’s ratio. Substituting (6), (8) into (9), (10) forr = a
and r = b yields a set of four linear homogeneous equations for the constants 4, B, C, D.
For a nontrivial solution, the determinant A(4,a, b, v) of this system must vanish. After
some rearrangements with the help of the Wronskian formula J, (1) Y (2) —J, (1) Y, (1) =
— 2/mu, we obtain

A = A*a?h*D2y + {1%a? — 2(1—v)} {A2b*— 2(1 —v)} D2,
4 4
+12a2{12b2 ——2(1 —V)} {D%] - m}+lzb2{ﬂ.2a2—2(l —V)} {D%o — m}, (1 la)

where

D,, = J,(Aa)Y,(Ab)—J,(4b) Y,,(Aa). (11b)

Note that the logarithmic terms in D,,, cancel and we have A —» —4(1 —v?)(b*—a?)?/n’a*b?
as 1 — 0. Hence A is actually an entire function of 42 whose power series expansion has real
coefficients. It follows that, for each choice of a, b, v, the roots of A(4,a, b,v) = 0 are the
eigenvalues which position themselves symmetrically about both the real and imaginary
axes of the complex A-plane. The general theory of entire functions of exponential growth
can be used to show that A = 0 must have infinitely many roots. It may be further shown
that the roots of large modulus are close to the large modulus roots of sin? A(b—a) —
A%(b—a)? = 0, which have the asymptotic form

i~ b—{—g[i(w%)niilog{<2n+1)n}]+0(1°$> (12)

as n— oo.

For each eigenvalue A, we can now construct the Love stress function ¢ of the
corresponding eigenfunction to obtain

2
lﬁ(r, /{, a, b, V) = ir[{izaz “'2(1 —v)}D] 1D‘{r1 +/12(12D0| ¢(1)rl - ; ibD'ibo}
2
+ [AJaZbDOODg'OwaaZ ~2(1=W)}Dyo D+ = (3707 =2(1 —v)}D;fl]

2
+2(1 ——v)li{)?a2 —2(1-v)}D, DYy +4%a*Dy D%y — - AbDE,”O], (13)
where
D) = J.(4p) Y, (Aq) — J,.(A9) Y. (Ap), (14)
with D;}, = D,,,. The Love stress function ¢ is then given by (6). The corresponding stress

and displacement fields can now be found by substituting this ¢ into the formulae given in
Timoshenko and Goodier (1951).



1962 R. D. GReEGORY and F. Y. M. Wan

2.3. Solution of boundary value problems

Let us denote the stress and displacement fields corresponding to the eigenvalue 4 by
{t"(r) e ~, u'(r) e *}, where the dependence on a, b, v is now understood. For each of the
boundary value problems 4, B, C, D specified by (1)-(4), expand the required solution in
the form

(r,2)= Y (e ™, u(rz) =Y aqu(ne ", (15)

Jel el

where L is the set of roots of A = 0 lying in the half-plane Re (4) > 0. The expressions (15)
automatically satisfy (1), (3), (4) and it remains to choose the coefficients {a;} so as to
satisfy the end conditions (2) in the appropriate case.t The procedure for determining the
{a;} depends upon the case being considered :

(i) For Cases B, C (which have mixed stress/displacement data on z = 0) one may

exploit the bi-orthogonality of the eigenfunctions [see Gregory (1983) and Gregory
and Gladwell (1984)] to give a simple formula for the coefficients {a;,}.

(i) For Case A (pure stress data), no closed formula for {g;} is available, but the
end-data (2a) can be fitted approximately by truncating the series (15) and fitting
the data (2a) by collocation [see Gregory and Gladwell (1989)].

(i) In Case D (pure displacement data) truncation and coliocation can again be
carried out, but special methods are needed [see Gregory and Gladwell (1982)] if
the stresses near the end z = 0 are required.

This completes our treatment of the exact theory. The main purpose of this brief treatment
is to establish the eigenvalues and eigenfunctions needed in the subsequent development of
a refined shell theory.

3. A REFINED SHELL THEORY

The main disadvantages of the exact three-dimensional theory are (i) the complexity
of the eigenfunctions, and (ii) the numerical difficulty in calculating them. Although the
eigenfunctions themselves were first presented by Prokopov (1949), it was not until the
1970s that sufficient computing power became available to calculate them directly. For
example Steven (1973) treated a specimen problem for Case A, while Redekop (1977) solved
amore complicated problem in which the cylindrical shell was sealed by a hemispherical cap.
Such investigations, though interesting in themselves, do not make it much easier for a
subsequent researcher to solve even a closely related problem.

At present the only practical alternative to the exact theory is the thin shell theory (and
then, as we shall see, only for Case A) based on asymptotic considerations. This is an
approximate theory which is valid and accurate at a distance of order h away from the
edge(s) of the shell in the limit as the dimensionless shell thickness ¢ tends to zero. It offers
a massive simplification, but is appropriate only for ¢ « 1 (less than 1/10 in engineering
applications). Recent results in plate theory (Gregory and Wan, 1985a, b) suggest that the
thin shell theory is, in principle, adequate only for Case A. The refined shell theory developed
in this paper will confirm this observation and provide a properly formulated thin shell
theory for other types of end data as byproducts.

A refined shell theory will be developed in Sections 3 and 4 to bridge the gap between
thin shell theory and the exact theory. This refined theory is much simpier to apply than
the exact theory, and yet is more accurate than thin shell theory because it retains terms of
order ¢ relative to the corresponding terms of thin shell theory. A pleasing feature of this
refined shell theory is that (unlike the exact theory) it is simple enough to allow closed form
analytic solutions to be found (see Section 5). An essential aspect in the formulation of our
refined shell theory is the derivation in Section 4 of the appropriate boundary conditions

+ We are presuming that this set of eigenfunctions is complete. This has never been proved, but the situe}tion
is analogous to that for the semi-infinite elastic strip, for which rigorous completeness results have been established
[see Gregory (1980a, b)].
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for the two-dimensional theory from the given three-dimensional data. Even for the first
approximation thin shell theory, the development in Section 4 provides new and funda-
mentally important results.

3.1. The PF-eigenvalues and eigenfunctions
Let the mid-radius R and a dimensionless thickness ¢ of the cylindrical shell be defined
by

a=R(1—¢), b= R(l+¢), (16)

so that R = (a+b)/2 and the actual shell thickness # = 2Re. The refined shell theory is
developed for small ¢ in the formulae of Section 2. In the present section we shall investigate
the asymptotic behavior of the “PF-eigenvalues and eigenfunctions™; these are eigen-
functions whose eigenvalues 4 behave like £~ ' as ¢ — 0. They are related to the plane strain
Papkovich-Fadle eigenfunctions for the semi-infinite strip of width 4.

Results of previous investigations suggest that we introduce the dimensionless eigen-
value w by

A=— a7

where (complex) w is bounded away from zero; thus |1| — co as ¢ — 0. With the alternative
representation

Dy, = 3 UHS (Ra) H (i) — HS (AB HE ()], (18)

where H{", H{® are Hankel functions of the first and second kinds (Watson, 1966), we may
use the asymptotic expansions for these functions to obtain

nw(l—g)? 1 1 27
5*‘—‘5—)——D00=COS2W 4—M—)82+ R*W 84+0(86)
1 27 13
. 1_____ 2 s PN 6
+sin ZW[ el +<128w4 32w2)e +0(s ):], 19)

with similar expressions for the other D,,,. Throughout this paper, all such evaluations were
performed with the assistance of computer algebra. The system used was MAPLE (1988)
installed on an Amdahl 5890 mainframe computer at the University of Manchester,
England.

Define the modified determinant AT (w, ¢, v) by

g T (W
A = T A=, RU -0, R(1+2), ), (20)

where A(4, a, b, v) is defined by (11). On substituting the expressions like (19) for D,,, into
(11), and then simplifying, we obtain

. 1
AFF = (sin? 2w —4w?) + e [(8v—7)(2w? +w sin 2w cos 2w)
+ (8vi—8v—1)sin?2w]le2 + O(e*). (21)

The asymptotic formula (21) is uniformly valid (as ¢ - 0) for w on any bounded set,
bounded away from w = 0, and lying in the first quadrant; this last restriction can be
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Table 1. Exact and approximate roots of A*F = 0 to five decimal places for the case & = 0.1,

v=03
n W, Expression (24) Exact root of A™ =0
1 2.10620 +i1.12536 210958 +11.12546 2.10962 +i11.12546
2 3.74884 +11.38434 3.75052 +11.38434 375054 +11.38434
3 5.35627+11.55157 5.35740+11.55155 5.35741 4-11.55155

dropped however, since both sides of (21) have the same reflective symmetries in the co-
ordinate axes of w.

It follows from (21) that, as & — 0, the roots of A?Y in any fixed bounded region of the
w-plane are closet to roots of

ALY = sin? 2w —4w? = 0. (22)

The roots of (22) are well known from the theory of the semi-infinite strip: There is a
quadruple root at w = 0, but no other real or pure imaginary roots; the complex roots are
simple and occur in symmetrical sets of four; if the roots lying in the first quadrant, and
ordered by increasing real part, are denoted by {w,}, n = 1.2, ..., then the root w, satisfies
the equation

sin 2w, = (—~ 1)2w,, (23)

with the asymptotic behavior of w, for large n given by (12) (for 6 —a = 2). The relation
(21) can be used to find an approximation to the root of A®F which is close to w, as & — 0

S 2 4
B, (1 — (— 1)" cos 2w,) ]8 +0(). (24)

- [(16v2—8v—9)+(- 1)"(8v—7) cos 2w,
We note that, since the expansion (21) for A" is in even powers of ¢, the “correction” to
w, is of order O(e?) as ¢ — 0.

Table | compares numerical values of w,, the corrected expression (24), and the exact
roots of ATF = 0 when ¢ = 0.1, v = 0.3 and n = 1,2, 3. The w, were found by performing a
(complex) Newton iteration with eqn (22), using as starting values the (large n) asymptotic
expression (12) ; the exact roots were then found by performing a Newton iteration with
the equation A’F = 0, using as starting values the (small ¢) asymptotic expression (24). For
each root w of A’ = 0, the corresponding PF-eigenvalue is given by 4 = w/(Re).

For each PF-eigenvalue 4, there corresponds a PF-eigenfunction whose Love stress
function ¢ is given by (6), (13). As ¢ — 0, the formula (13) for § can be evaluated asymptot-
ically by the same sort of procedure as was used above for A; the details are more
complicated, since (13) also involves the radial co-ordinate r. The results of this calculation
for the eigenfunction stresses and displacements are given in Appendix A a significant
feature is that the “correction terms” are of order O(g) as ¢ — 0 (unlike the eigenvalues
where the correction term has order O(c?)).

3.2. The “‘shell” eigenvalue and eigenfunction

We must still account for the four roots of A = 0 which are of order o(¢™ ') as & — 0.
(The existence of these roots is established by (21), since (22) has a quadruple root at the
origin.) We shall show that these roots are a symmetrical set of four (4, Z, — A, — 7 with
0 < arg A < m/2) and that, as ¢ —> 0,1 is close to the eigenvalue predicted by thin shell
theory.

Previous results suggest that, for the shell eigenvalues, we should re-scale and set

+More precisely : If C is any simple closed contour, not passing through any root of (22), then, for all
sufficiently small ¢, the number of zeros of A’ lying in C is equal to the number of zeros of AbF lying in C.
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W
~ &

A (25)

where (complex) W is bounded away from zero; then |i] — oo as ¢ = 0. We can now
proceed through a process similar to that in Section 3, but using (25) instead of (17).
As ¢ — 0, this case is more ill-conditioned than that of the PF-eigenvalues. Because of
cancellations, it is necessary to retain nine terms in each of the expansions of Bessel functions
in order to obtain a two term approximation to A. In addition, the exponential term is now
e-dependent. However MAPLE (1988) can handle such difficulties and we find, for instance,
that

i 1/2
D= W(Tf”) W2 40624 (f5 W — 1 W) e

+(E W= =W+ 06" (26)

with similar expressions for the other D,,,.
Define the modified determinant AS(W, ¢, v) by

3w

s
A" = 64

" W
s“A(W, R(1—¢), R(1+¢), v), 27

where A(4, a, b, v) is defined by (11). On substituting the expressions such as (26) for the
D, into (11) and then simplifying, we obtain

A = (W+do) - Wi o'+ & WHe+0(?), (28)

where the constant o(v) is given by @ = {3(1—~v?)/4} V4. The asymptotic formula (28) is
uniformly valid (as ¢ — 0) for W on any bounded complex set, bounded away from zero.
It follows that, as ¢ — 0, the roots of AS = 0 lying in any fixed bounded region of the W-
plane are close to roots of

A} = Wiidot=0. 29

Equation (29) has only the symmetrical set of four roots W = (1 +1)w and we shall focus
attention on the zero of AS which (as ¢ — 0) is close to W,, where

1t follows from (28) that this zero of AS is given by
W = o(1+i){1 - fiw’} +O0(?) 3D

as ¢ —» 0. We note that the “correction” to W, is of order O(g), unlike the PF-eigenvalues.
The limiting value W, gives the eigenvalue

_o(+i)

bo = "Re G2

which is the value predicted by thin shell theory; (31) then gives the corrected value
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o+,
= )ttt 06 (33)

as¢ — 0. The formula (33) differs from the corrected value of 1 derived by Prokopov (1949).
However, Prokopov assumed that only powers of W up to W* should appear in his
expansion of A; this assumption is now seen to err in the O(e) term [see (28)] which is
significant for the refined theory.

Table 2 compares the thin shell eigenvalue (32), the corrected shell eigenvalue (33),
and the exact shell eigenvalue for R = 1, v = 0.3 and for a range of values of ¢; the exact
shell eigenvalue was calculated by performing a Newton iteration with the equation A = 0,
using as the starting value the expression (28). These numerical results clearly confirm the
adequacy of this asymptotic expression for the range of & values there.

The Love stress function of the shell eigenfunction is given by (6), (13}, where 7 is now
taken from (33). The formula (13) for i can now be evaluated asymptotically as ¢ — 0 by
substituting (25} into (13) and proceeding as for A. The details are complicated as the radial
co-ordinate r now appears; also it is found that 11 terms have to be taken in the Bessel
function expansions. The results of this calculation for the eigenfunction stresses and
displacements are given in Appendix B. The leading terms are found to be the same as the
predictions of thin shell theory. The correction terms [which are of order O(e)] differ from
those derived by Prokopov (1949). This is in part because Prokopov’s O(g) correction of the
thin shell approximation for A requires a significant modification. In addition, Prokopov's
expression for 7,., for example, contains no term in &* [compare with (B13). (B14)].

4. BOUNDARY CONDITIONS FOR THE REFINED SHELL THEORY

By using the formulae in Appendices A, B, one may now replace the terms in the
eigenfunction expansions (15) by their refined approximations, and then proceed to solve
the boundary value problems A-D as in the exact theory. This avoids the computational
complexity of the exact theory and (as the first example in Section 5 shows) also produces
a substantial improvement in accuracy over thin shell theory throughout the whole shell
for moderately small values of &.

However our main purpose here is not to proceed with this essentially numerical
process, but to create an analytical refined shell theory valid and more accurate than thin
shell theory in the shell interior. Such a theory is possible (as is thin shell theory) because
of the differing rates of decay of the shell and PF-eigenfunctions as z increases. The decay
of the PF-eigenfunctions is governed by the real parts of the PF-eigenvalues {4,}. It follows
{see Section 3) that the “decay length” of a general linear combination of PF-eigenfunctions
is Re/R(w,) ~ 0.24h, where h is the shell thickness; thus this combination will be insig-
nificant (compared to its value at z = 0) for (say) z > h. We shall refer to such an elastic
state in the shell as being rapidly decaying. On the other hand, the shell eigenfunction (see
Section 3) has the decay length Re''*/w ~ 0.8(Rh)"'*; this is long, compared to the PF-
decay length, when /4/R is small.

In the present context, the object of a shell theory is to determine, in the expansions
(15), the coefficient of the shell eigenfunction (and its conjugate). These two terms dominate
the sotution for z > & when A/R is small. For the stress boundary value problem, thin shel

Table 2. Exact and approximate values for the shell eigenvalue (to four decimal
places) for thecase R =1, v = 0.3

Exact root of

Thin shell theory Refined shell theory

e (32) (33) A=0
0.08 3.2135+i3.2135 3.2985+13.1286 3.3029+13.1324
0.04 4.5446+i4.5446 4.6047 +14.4845 4.6062 +14.4859
0.02 6.4270+i6.4270 6.4695 +i6.3846 6.4700+i6.385]

0.01

9.0892-+19.0892

9.1192+19.0592

9.11944+19.0593
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theory is supposed to determine these coefficients (and eigenfunctions) correct to order
0(1) as & — 0, while the refined shell theory of the present paper determines them correct
to order O(g). As the examples in Section 5 show, the differences between the thin and
refined shell theories can be substantial, even when thin shell theory is known to be
asymptotically valid. More importantly, the method for determining the coefficients of the
shell eigenfunction for the refined theory and its conjugate is not a simple extension of that
for the thin shell theory. This is so even for the pure stress end data case for which the
conventional thin shell theory will be shown to provide the leading asymptotic approxi-
mation.

For the displacement boundary value problem, however, the correct determination of
the coefficients of the shell eigenfunction and its conjugate in (15) is actually not known up
to now, even in thin shell theory [see Nair and Reissner (1978) for related developments].
In the more conventional formulation of shell theories in the form of a system of two-
dimensional differential equations and boundary conditions, there is no two-dimensional
edge condition known to be the generally appropriate replacement for Case D end data
except when the data are linearly distributed across the shell thickness. We will show
that the correct edge conditions generally do not correspond to the presently accepted
displacement boundary conditions for thin shell theory even for very thin shells.

The formulation of the proper two-dimensional edge conditions for the different types
of end data constitutes the heart of the present paper. In developing these edge conditions,
it is possible to allow the prescribed data to depend generally upon &, as well as on the
radial co-ordinate £. The methods described below do apply to such general data but, in
order to simplify the form of the final conditions, we will usually assume that the data is
of order O(1) and also does not depend on &. The modifications required for the more
general case are clear enough.

4.1. Case A— Pure stress data

Suppose that the data on z = 0, a < r < b is that prescribed by (2a). It is tempting to
try to determine the refined shell solution by requiring that its stress resultants and couples
at z = 0 should equal those of the precribed data 7..(r), 7..(r). The analysis below proves
that such an approach generally does not lead to the correct asymptotic solution except for
the leading terms (as ¢ — 0), thus justifying its use only in thin shell theory.

The derivation of the correct conditions to be applied at the end z = 0 is similar to
that in thick plate theory [see Gregory and Wan (1985a, b)]. The problem is equivalent to
asking what conditions the end-data functions 7,,(r), 7,,(r) must satisfy in order that the
resulting state of stress in the shell should be rapidly decaying as z — 0. By using the elastic
reciprocal theorem as in Gregory and Wan (1985a), it follows that end-data which generates
a rapidly decaying state must satisfy necessary conditions of the form

b
f [U,f,+ U,z,]rdr=0. (34)

In (34), U,, U, are the end displacements (on z = 0) of any axially symmetric elastic field
{T, U} in the shell, which satisfies the boundary conditions

T,=T,=0 on {r=ab,z>0} 35)

T.=T,=0 on {z=0,a<r<b} (36)

and that T is not rapidly increasingt as z — oo. As this latter requirement is significantly
different from the algebraic growth restriction for the corresponding plate problem, the
construction of {T, U} requires more finesse. We will now construct rwo suitable states

{T, U} correct to order O(e).

) t That is, not increasing as rapidly as any of the increasing PF-eigenfunctions. Note that {T, U} may (and
in fact must) grow exponentially as z — co.

SAS 30:14-1
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Let 7/(r) e* denote the shell eigenfunction (with eigenvalue 1 lying in the first quad-
rant) and define

() =R{Te ™),  1(rz) =3l F). (37,38)
Consider the stress field
[=5hie 2+ 2%, (39)

where [t],_,_; denotes 7 with A replaced by — 4. The first term grows exponentially as
z - o0, but is not “rapidly increasing” (see footnote on p. 1967). On r = a, b, the stress field
(39) satisfies (35), while on z = 0 its rz-component is zero by symmetry (see Appendix B).
The zz-component of (39) on z = 0 has the value 2t%(r,0), where [see eqn (B11)]

tR(£,0) = —1EE(11+5¢8Y)e+ O(e?) (40)

as ¢—0; here E is Young's modulus, and the dimensionless radial co-ordinate &
(—1 < £ < 1)isdefined by r = R(1+ &g). The stress field (39) is therefore an approximation
[correct to order O(1)] to a possible T for (34).

To obtain a better approximation correct to order ¢, consider

[0+ 77— 02l 4] (@1)
The zz-component of the stress field (41) on z = 0 is given by
SEE(3—5EM)e+0(?), (42)

while the rz-component is now O(e*?).
Now imagine that

T = 4EE(3-5¢%), 14 =0 (43)

is the prescribed end-data for the plane semi-infinite elastostatic strip —1 < <1, {2 0,
whose long sides are traction free. This set of end-data is self-equilibrating in (&,()-
space and so [see Gregory (1980b)] can be expanded as a series of the Papkovich-Fadle
eigenfunctions for this strip. Take this set of expansion coefficients, but now replace the
strip PF-eigenfunctions with the shell PF-eigenfunctions of Appendix A. The leading term
of these shell PF-eigenfunctions (as ¢ — 0) coincides with the strip eigenfunctions, and so
we will generate a rapidly decaying stress state z'F in the shell whose zz- and rz-components
on z = 0 are given by $E£(3—5¢%)+ O(e) and O(g), respectively.

An approximate T, which is appropriate for our refined shell theory when used with
(34), can now be constructed in the form

T= [‘ER]AQ,A'%-TR— )li%mzhl% +TI]~tPFS+TERR. (44)

where the zz- and rz-components of t¥*® on z = 0 are of order O(c?) as ¢ — 0, and all terms
except the first are exponentially decaying as z — oo. The displacement field at z =10
corresponding to the stress field (44) has the form

U, = 4(1 —vée)— Y @'+ O(*?), U, = constant+0(s"?), (45)

as ¢ — 0. A pleasing feature of (45) is that the displacement field corresponding to "¢ is of
order O(e?) [see Appendix A, eqns (A3), (A4)], and so makes no explicit appearance ; this
means that we do not need to solve the plane semi-infinite strip problem for the end-data
(43). On substituting (45) into (34) and changing the integration variable to £, we obtain
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fl 1+ fs)t( 1—vée— B wle+0(e¥?))7,,(E) + (constant + O(e ) T,.(£)] dE = 0.  (46)

In view of the restriction (11), the constant O(1) term in U, makes no contribution to
(46). Also the term —28w?¢/15 can be removed from (46) by multiplying the whole equation
by (1+ #w?). Finally, by replacing t®*® in (44) by an appropriate combination of t*, ¢/,
together with a new error term, it may be shown that the two O(¢*?) terms in (46) may in
fact be improved to O(g?). The condition (46) then becomes

1
,L (1+&e)(1 —vEe)T.(§) d¢ = O(?) CY))

as ¢ — 0. [In order to simplify the writing, we have assumed that the data 7,,(£), T..(&) is of
order O(1) as & — 0; if this is not so, then the error term O(&?) may be changed. Also, if 7,,
and 7, depend on ¢ analytically, we should truncate. their Taylor series in ¢ after the first
two terms. Similar remarks apply to the data in Cases B, C, D treated later.] The requirement
(47) is our first necessary condition that the data (2a) should generate a rapidly decaying
state; when working with our refined shell theory, correct to order O(e), the right-hand
side of (47) is negligible.

A second necessary condition for a rapidly decaying state can be obtained in a similar
way by beginning with the stress field

[‘!’R + f’]l_., - {fR -+ ‘I'I] (48)

instead of (39). The final form of this condition is

!
f_] (1+&e)¢(1—v&e)t..(£) dE = OC?) (49)

as £ — 0, where, as before, the dimensionless radial co-ordinate ¢ is defined by r = R(1 4 &¢).
The limiting forms of the conditions (47) and (49) as ¢ - 0 can be written as (on
restoring the radial variable r)

b b
Q,-_-j () g dr=0, M= f (r—R)E()zdr=0,  (50,51)

where Q,, M, are the stress resultant and couple (across the shell thickness) as defined, for
example, by Johnson and Reissner (1958). These limiting necessary conditions for a rapidly
decaying state are thus equivalent to the usual appeal to Saint-Venant’s principle [see
Timoshenko and Goodier (1951) for example]. In the refined theory however, we see that
Saint-Venant’s principle does not yield the appropriate correction terms (except when
v = 0). The situation is summarized by the following theorem:

Theorem. Suppose that ©,,(r), ©,.(r) have the same order of magnitudet as € — 0. If the
data ©,.(r), T..(r) induce a rapidly decaying state, then

(@) The corresponding stress resultant Q, and stress couple M, must vanish (so that the
conventional use of Saint-Venant's principle is justified) for the thin shell theory.

(b) The modified stress resultant Q, and modified couple M, given below must vanish
Sor the refined theory :

| t This condition can be relaxed to allow ., ,, to have orders of magnitude which differ by &*as ¢ — 0, where
a} < 1.
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0. = j (1 - ‘i(—r:%&>f,:(r)%dr =0, (52)
b ——
M. = (r-R)(l - v%gz)fu(r) % dr=0. (53)

The correctness of the conditions (52) and (53) is verified explicitly in Appendix A. These
conditions should be compared with the corresponding conditions for flat plates obtained
in Gregory and Wan (1985a).

4.2. Case B—Mixed data

Let 1,. and u, be prescribed on z = 0 as in (2b). In this case, the reciprocity argument
implies that if this end-data generates a rapidly decaying state then it must satisfy necessary
conditions of the form

b
,( (U...—T.a]lrdr=20 (54)

on z = 0, where the secondary state {T, U} satisfies the same conditions as in Case A, except
that (36) is replaced by

T.=U=0 on {z=0,a<r<b)}. (55)

An exact choice for T is
T= —-—L[1R+'c’]l+.,~,+41-[1:"+1:’] (56)
20 20
and corresponding values of U,, T,, on z = 0 are given by (see Appendix B)
R'U, = 4&e"? — & (10+29v + 15vE)e¥ 2 + O(e¥?), (57

E7'T,. = §(1-E)(33+569)e + 0(e™?) (58)

as ¢ - 0. On substituting (57), (58) into (54), the terms of (57) which are independent of ¢
give no contribution [because of the restriction (3)], and the resulting condition is

1
j (1+Ee)[E(1~4vEe) E~ '..(&) — F5 (1 —E)(33+56%)eR™ 3 ()] AL = O@")  (59)
1

ase— 0.
A second exact choice for T is

T= - S~ i+ S "7 (60)
2 2
which leads to the condition

j‘ (1+&)[U =) — (1 +v)E1 - )R 4, (8)

FAHNQR—VE +5(16—3MOEE 1.(O)]dE = O(e>).  (61)
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Equations (59), (61) can be used to simplify each other. On retaining only leading
terms, these equations reduce to

I 1
j_l ¢T(9) dE = 0(e), Jq (1-¢Ha,(8) dE = 0(e), (62, 63)

and these equations enable certain of the O(g) terms in (59), (61) to be removed. The
simplified equations are

JV_ At +E)E(1~IvEe)E™ . ()~ 482 (1 - DR 'a,(D] d¢ = OD), 4

1
L a +£s)[{,—}v(1 —&)—& -éZ)S}R"ﬁr(é)+(2~V)£38E“‘fzz(é)] d¢ = 0().
(65)

The two integral conditions (64), (65) are the required necessary conditions that the data
.., 4, should generate a rapidly decaying state.

4.3. Case C— Mixed data
Let 1., and u, be prescribed on z = 0 as in (2¢). For these end-data to generate a rapidly
decaying state, they must satisfy necessary conditions of the form

b
J\ [Ug.~T,ua,]rdr=0 (66)

on z = 0, where the secondary state {T, U} satisfies the same conditions as in Case A, except
that (36) is replaced by

T.=U,=0 on {z=0,a<r<b}. 67

Two exact choices for T are

T = [t 2+ 35, (68)
and
1~v? —y?
T = st 5y . ©9)

Since in the present case we have u,(r, 0) (and not 1,,) prescribed, we need an additional
necessary condition on 7,,, @, to ensure that the induced displacement field u,(r, z) (as well
as the stress field) is rapidly decaying as z — co. This is easily obtained however by taking
{T, U} to be a state of simple tension parallel to the axis of z. The resulting condition is

f‘ (1+&eR "% Q) +v(1+E)E'T,.(H) d¢ = 0. (70)

The conditions arising from (68), (69) may be used to simplify each other, as in Case
B. The simplified formulae are :
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1
'[ 1 (1+&e)[(1 —vE)E™ '1.(O) +&%eR ™ 'E(O)]) AE = O(E?), (71)

Jﬁl (1+&e)[E(1 — 2vE) R™ (&) + 2v(1 +v)E%E ™ 'T,.(O)] dE = O(&?). (72)

Equations (70)—(72) are the required necessary conditions that the data 7,.,#, should
generate a rapidly decaying state.

Case D— Pure displacement data

In this case it does not seem feasible to obtain explicit boundary conditions [similar to
(47)—(49), (64)—(65) and (70)—(72)] for the refined shell theory, though the method of
reciprocal relation still applies. However we may still deduce the correct boundary con-
ditions for the (leading term) thin shell theory in terms of known results by using a different
argument to obtain the appropriate canonical secondary states {T,U}. Despite the long
history of thin shell theory, these conditions are new to the literature.

From Appendix A, we can verify that the leading terms (as ¢ - 0) in the PF-eigen-
functions are identical to those of the plane strain semi-infinite strip —~1 < ¢<1,{ =0,
where { = z/e. The displacement fields (on { = 0) of these strip eigenfunctions are known
to satisfy conditions of the form [see Gregory and Wan (1984)]

Jl . [‘ré(c(éa 0)u§(€a O) +Tg(c(5, O)ul(é’ 0)] dé = 03 (73)

where t*(¢,{) (X = T, B or F) are the stress fields of three canonical problems for the strip,
whose end { = 0is clamped, and which is subject to unit tension (7'), bending (B) or flexure

(F)at{ = +o0.
A rapidly decaying state in the shell is just a linear sum of its PF-eigenfunctions. It
follows that, if the end data #,, &, for the shell generates a rapidly decaying state; we have

j_l [1% (&, 0)a.(&) + 17 (&, 0)iZ(£)] dE = O(e) (74

as ¢ — 0. The equations (74) (with X = T, B or F) are the required necessary conditions
for rapid decay, correct to order O(1).

It should be noted that t}(&,0), tf;(£,0) are not polynomials in £ [see Gregory and
Gladwell (1982)]; in particular then, the plausible conditions

J 112,(5) ¢ = j lﬁz(é) & = j 1 a(5)dE=0 (75)

are generally not the conditions for rapid decay, even in thin shell theory. However the
conditions (74) and (75) do happen to coincide for the special case in which

ar = Wy, az = u0+¢06’ (76)

where wq, uy, o are constants. In this case, both (74) and (75) predict that the data (76)
would induce a rapidly decaying state only if wy = 1y = ¢ = 0.

S. EXAMPLES

Example 1. Our first example is a numerical comparison of the exact theory, refined shell
theory, and thin shell theory for a particular set of end-data of Case A.
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For the case in which ¢ = 0.1 and v = 0.3 we solved eqn (11) numerically to find the
dimensionless shell eigenvalue RA, and the dimensionless shell eigenfunction
{E~'7*, R~ 'u*}, conveniently normalized. The real parts of 7/ (r, 0), 7% (r, 0) were then taken
to be the data 7,,,7,,; this data is depicted in Fig. 1. By construction, the exact solution
corresponding to this data is known.

The refined shell theory solution corresponding to £,,, ., has the form

{AT® + B!, Au® + Bu'} )

(see (37), (38) and Appendix B), where the real coeflicients 4, B are to be chosen so that
the difference between the tractions of (77) and the data £,,, T,, satisfy (47), (49) with the
right-hand sides set equal to zero. This implies that

81/2 81/2

—w—(—2+ B we)d+ ?(2+ 8 w%)B = ﬁl 1+ &)1 —vE)E'T,,(E)dE,  (78)

8w’

(— o4+ ( - 3(T7)>B = J A+ -PEE e de.  (79)

The integrals in (78), (79) were computed numerically and this 2 x 2 system was then solved
for 4, B. These values were then inserted into (77) to determine the refined shell solution.
The corresponding thin shell solution was also evaluated by retaining only leading terms
(as € > 0) in (77)—(79). Since the exact solution has no “PF-part”, it is meaningful to
compare the exact and approximate solutions at z = 0. Figure 1 compares the actual data
1,,, T,, with the representation of that data by the refined and thin shell solutions. The two
approximations both represent the end data well, being indistinguishable from 7,,, but with
the refined theory representing 7,, more accurately.

3

Fig. 1. The data on z = 0: the dots are points of the actual data %,,%,,, while the curves are
representations of this data in the refined shell (solid) and thin shell (dashed) solutions; ¢ = 0.1,
v=03.
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Fig. 2. The exact value of 14(&,0) (dots) compared with values predicted by refined shell (solid)
and thin shell (dashed) theories; & = 0.1, v = 0.3.

The situation is quite different however when we compare the predictions (i.e. the
solutions) of the two approximate theories. Figure 2 shows the exact values of the important
induced circumferential stress 745(&, 0), together with the predictions of the refined and thin
shell theories (¢ = 0.1). Thin shell theory is significantly inaccurate, underestimating the
maximum value of 14 (Which occurs on the inner surface of the shell) by about 15% ; the
corresponding error in the refined shell theory is about 0.7%. With ¢ = 0.2, the errors in
740 predicted by the thin and refined shell theories were about 26% and 2.5% respectively.

We conclude that the accuracy of the predictions of thin shell theory cannot be inferred
from its ability to represent the prescribed data and also that the refined theory appears to
be sufficiently accurate for practical purposes when ¢ is as large as 0.2 (h/R as large as 0.4)
i.e. for moderately thick shells.

Example 2. Our second example relates to the particular Case A data

fr:(r) = - 7’11 (s(r;a>’ f:z(r) = Oe (80)

where 8(°) is the Dirac S-function. (This combination corresponds to a radially directed line
loading P (per unit angle) applied around the inner rim r = a, z = 0 of the end of the shell.)

In terms of &, (80) becomes

o P S
T:(8) = — Roe(1—e) oE+1), 7.(8)=0. (81)

The refined shell solution corresponding to (81) has the form (77), where the real coeflicients

A, B satisfy (78), (79) with 7,., T_. given by (81). This gives

E 'Pw E~'Pw
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The refined shell theory solution is obtained by substituting (82), (83) into (77). In particular
we find that}

106(£,0) = —R%z— [14+ (v +20Y)e— 15 E(5vE*+9v+10)e], (84)

so that on the inner surface of the shell and with v = 1/2

PJ/3
Tg(—1,0) = W[I'*'%E]- (85)

Thus, in this case with ¢ = 0.1, thin shell theory will be about 25% in error. (Of course,
thin shell theory was never intended to be applied to this type of problem.)

Example 3. Here we have essentially the same radial line loading as in Example 2, but now
applied around the inner surface of an infinite cylindrical shell.

By symmetry, the boundary conditions at z = 0 to be applied to the right-hand half
are

— _ P
U, = O, T, = — ﬁ 6(€+ l)a (86)

which is Case C mixed data. The refined shell theory solution corresponding to (86) has a
displacement field of the form

A@W® +u’) + B(u® —u') + C(RK), (87)

where A4, B, C are real constants, and k is the unit vector pointing in the z-direction. The

coefficients 4, B, C are determined from the conditions for rapid decay (70)—(72), which

must be satisfied by the difference between the data (86) and the refined shell solution.
From (70), we obtain

—1 1

0= — ——n
¢ 2aRe J_

1 v(1+&e)?0(E+1)d¢

so that

E-'Pv(1—¢)

C =
4R ’

(88)
with no approximations. On neglecting terms of order O(e?), (71) and (72) give
(3 w’e)A—4B = —K(1 +ve),
(B A+[AQ2-3v)(11+14v)e] B = —Kg (1+4v)e, (89)

where K = E~' Pw/(2R?c*?). Thus, we have

11 K
A= — E P(1 __vz)g, B = lK(l +V€)' (90)

T We are aware that at z = 0, the PF-part of the solution cannot be neglected. However 109(£,0) is still a
convenient measure of the difference between the refined and thin shell theories.
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The expressions {88), (90) determine the refined shell solution corresponding to the data
{86). In particular, when v = 4, we find (see footnote on p. 1975)

P
90(¢,0) = R§/3/2[(1+f)+20(33 2561582 —5¢%)e]. on

The corresponding stress resultant N, is given by

b t £y
3
Ny = J Too(r) dr = Re j Tgp(8) d& = ~\Z 5 [14 %], (92)

Example 4. In this example we obtain the thin shell solution for a shell with pure displacement
end data (Case D).

In classical thin shell theory there is really no known way of treating this case except
when the prescribed displacements @,(£), i.(£) have exactly the same &-variation as some
linear combination of the thin shell eigenfunctions u*,w’; in particular they must be linear
functions of ¢. Consider the particular datat

i@ =0, i = phé’, (93)

where £ is the shell thickness, and § a small dimensionless constant. The thin shell solution
corresponding to {93) has the form

u = Av® + By, (94)

where u®, u’ now mean just the leading terms of the expressions in Appendix B. (In general,
{94) should also include an unknown rigid body displacement in the z-direction, but the
anti-symmetry of #, implies that this is zero.) The coefficients 4, B are determined from the
conditions for rapid decay (74) with X = B (Bending) and X = F (Flexure). This implies
that

—(2e"2w) A~ (26" *w)B = B¢ f E3(&,0) dé, (95)

24 = Gﬁf & (8, 0)de, (96)

where t8(&, {) and (¢, {) are the stress fields for the plane strain cantilevered semi-infinite
strip £ = 0, |¢] < 1 under unit bending (B) and flexure (F) at { = + oo, respectively [see
Gregory and Wan (1984)]. It is convenient to use the notation of that paper, namely

1
n,*'ff ST 0 dE, f’zj £t (£,0) e, (97,98)

where X = B or F. The integrals in (95), (96) are therefore n3, n5 réspectively ; their values
i

depend only on v and are tabulated for v =, i, 3 in Gregory and Wan (1984). The
conditions (95), (96) then imply that

B
A =] %gﬂng, B= -—%QB ik +n% s (99’ 100)
?]/2

+1f Bh¢® were replaced by Bhé, this would correspond to a rotation of the radial line elements through a
small angle 28. The data (93) gives the same displacements at £ = + 1, but has a curved (cubic) profile.



A refined shell theory 1977

and this determines the thin shell solution corresponding to the data (93). In particular, we
have

2 B
T00(&,0) = sﬁE[n*; + 133_%( il +n’§>¢]. (101)

e

When i, = Bhé, the corresponding value is

2 B
w(6,0) = eﬁE[?_%( 7 )é] (102)

ew

Since 5 = —1, n ~ —0.63, n§ ~ —0.08, we see that (101), (102) have quite different
values. It follows that the displacement profile at z = 0 has a first order effect on the induced
stresses. Note also that our solution for the end data (93) gives the same leading term
bending couple and transverse shear resultant at z = 0 as the Nair-Reissner (1978) solution
which assumes transverse inextensibility.

6. THE REFINED THEORY WITH KNOWN STRESS RESULTANT AND COUPLE ONLY

As Koiter (1970) has pointed out, the pointwise distribution of the boundary data on
the edge of a shell is usually not known exactly in practical problems. (Important exceptions
include a free edge, a clamped edge and certain special loadings such as those in Section 5,
Examples 2, 3.) Can we establish bounds on the magnitude of the corrections given by the
refined theory if only resultant forces and moments are known at z = 0?7 The answer is
positive if some constraint is imposed on the end data through physical consideration. The
following two cases illustrate this point :

(i) Suppose we have Case A (pure stress) data with 7,, = 0 and some £,,(&) such that
the corresponding value of Q, is positive. In the refined theory, the influence of this data is
dependent [see (52)] upon @, given by

1
0.= %hj_ at +&e)(1—vEe)7,.(£) d¢, (103)

whereas we know only the value of Q., given by

Q. = 3h j_l (1+8e)7,.(d) d¢. (104)

In general Q, is not closely related to Q,. However, for the case in which
(020 (-1<i<), (105)

(which might be expected on physical grounds) the Mean Value Theorem for integrals gives

1
0. = (1—Vﬂ8)%h£l (1+¢e)7,.(8) d¢ (106)

for some 5, —1 < n < 1. Thus, in this case

(A—=ve)Q. < 0: < @:(1+v]e), (107)

which delimits the effect on §, of the pointwise distribution of T,..(€).
(ii) Suppose now that 7,,(£) = 0 and that we have some 7,(£) such that the cor-
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responding value of M, is positive, and (3) holds; we wish to establish some connection
between M, and M.. From (53), we have

4 . [
M. = f (4820~ 1)) de
4 1 B 2 -
=) M:—zVﬁJ U+ &9 dE, (108)

and on integrating by parts

1

J‘l E(1+Le)T(O) dE = [C RO ~J 28F(§) d¢, (109)

where

F(E) = J (1 +&0)Ea(E) dE, (110)

For the case in which 7,.(¢) is an increasing function of ¢ in [—1, 1], which might be
expected on physical grounds, it follows from (3) that F(¢) < 0 and F(—1) = F(1) = 0.
Hence, in this case,

4 . 4 ‘
M= PM:+V8J G
4 !
= M:+vn8j‘F(é)d€ (111)

for some 1 (—1 < 5 < 1), on using the Mean Value Theorem. But, on integrating by parts,

1

f ]F(ﬁ) dé = L1, —J 1 ¢ +Ee)t.. (D) dd

Y] (112)

and so

(1—|vle)M. < M. < (1 +vie)M.. (113)

This delimits the effect on M, of the pointwise distribution of 7,.(&).

We remark that the two results above deal only with corrections arising from the
boundary conditions ; further corrections of the same order arise from the refined shell
eigenfunction itself.

7. CONCLUSION

In Sections 3-6 we have developed a complete refined theory for the semi-infinite
(complete) cylindrical shell in axially symmetric deformation. This refined theory is-a bridge
between thin shell theory and the three-dimensional elasticity theory away from the end.
The refined eigenfunctions in Appendices A, B can be used as an approximate elasticity
theory solution; or the shell eigenfunction of Appendix B, together with the boundary
conditions of Section 4, can be used as a refined shell theory for the shell interior. (An
exception is the displacement end-data case ; some additional calculation, beyond that done
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in Section 4, is needed for a refined theory.) In either case the refined theory is accurate for
moderately thick shells for which the use of thin shell theory is inappropriate. It should be
possible to develop a similar refined theory for nonaxially symmetric deformations, and
also for other shells of revolution.

In addition to completing the formulation of a refined shell theory, the method of
obtaining the appropriate boundary conditions for the interior solution (without any
reference to the boundary layer solution) is also of fundamental importance to the for-
mulation of any shell theory or the actual interior solution. In particular, the method allows
us to obtain for the first time the generally appropriate displacement (and mixed) boundary
conditions for a leading term asymptotic theory for thin shells.
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APPENDIX A: THE PF-EIGENFUNCTIONS

We showed in Section 3 that {4,}, the PF-eigenvalues lying in the first quadrant, are given by

w, 5
Ay = Re U TOED) (AD

as £ — 0, where {w,} (n > 1) are the ordered roots of sin’> 2w —4w? = 0 lying in the first quadrant. Thus, in a
theory correct to O(¢), the correction term in (27) is negligible so that 4, can be approximated simply by w,/(Re).

Let the elastostatic state corresponding to 4, be denoted by {z(r) e, u (r) e~} and define the dimen-
sionless radial co-ordinate & by

r = R(1+ &), (A2)

so that @ <r < b corresponds to —1 < ¢ < 1. Then as £ —» 0 the components of u'”, 7™ (when conveniently
normalized) are
R = w,(14+v)[—2(1 —v)(=1)"cos w,(1 +&) —2(1 —v) cos w, (1 — &)

+w, (1 =(=1)"sin w,(1 + &) +w, (1 + &) sin w,(1 —O)]e+ 0E?), (A3)

R4 = —w,(1+ W) [ w, (1 — &)~ 1)" cos w, (L + &) + w,(1 + &) cos w, (1 — &)
+(1=2v)(=1)"sin w,(1+&) — (1 —2v) sin w,(1 - O))e+ 0(e?), (A4)

E'TD = wiw,(1=&)(— 1) cos w,(1+&)
~w,(1+¢&)cos w,(1—&)+(—1)"sin w,(1 + &) —sin w, (1 —&)]
+ 5w [=w,&(1 =) (~ 1) cos w, (1 +&)
+w,S(1+&) cos w,(1 - &) + { —4v(1 — &) + (1 — 28 }(— 1)" sin w, (I + &)
—sin w,(1 - &)]e+O(e?), (A3)

E~ 't = 2vw2[(~1)"sin w, (1 4+ &) —sin w,(1 —&)]
+w,[(4v?—v~2)(—1)" cos w, (1 + &) — (2—v) cos w, (1 —&)
Fw, (—vE =L+ (= 1)"sin w, (1 + &) +w, (v + £+ 1) sin w, (1 — e+ O(e?), (A6)

E7'2 = wi—w,(1-)(—1)" cos w,(1 +&)
+w,(14+ &) cos w,(1 =& +(—1)"sin w,(1 + &) —sin w,(1 - &)]
=, [{2(1 =20) —wye(1 = &)} (~ 1)" cos w, (1 +£)
+{w2E(1+&) —2(1 —2v)} cos w, (1 — &)
Fw, i = 4v(1 = £+ (328} (— 1)" sin w,(1 4+ &) +w, sin w,(1 - )]e + O(e?), (A7)

E7l = —w[(1 = (= 1) sin w,(1+&) + (1+&) sin w,(1 - O]
+dw, 2w, (1 =2v)(1 = EY(—1)" cos w, (1 + &)
+wil(1-)(—1)" sin w,(1+)
+H{WZE(1+ &) —2(1—2v)} sin w, (1 — &)]e+ O(e?). (AB)
The PF-elastostatic states {t*(r)e ™%, u"”(r) e 7%} are specific examples of “rapidly decaying states™, as defined
in Section 4. As such, they should satisfy the decaying state conditions (47), (49) rather than the (plausible) Saint-

Venant conditions (50), (51). This may be verified by direct integration using the expressions (A7), (A8) above.
1t is found for instance that

j (1+&e)r? () dE = [4v{l (= 1)"} sin® w,Je + O(e"), (A9)
while

j (1+&)u2(©) (1 —vée) d& = O(&?), (A10)
-1

as predicted by (47). The fact that the PF-eigenfunctions are found to satisfy (47) (and all the other decay
conditions in Section 4) is a valuable check not only on the expressions in this Appendix, but also on the decay
conditions themselves. In contrast, eqn (A9) shows conclusively that Saint-Venant’s principle cannot be applied
as a condition for rapid decay in the refined theory.
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APPENDIX B: THE SHELL EIGENFUNCTION

We showed in Section 3 that the shell eigenvalue lying in the first quadrant is given by

i =£U%Zi—)[l—§iwze+0(sz)] (B1)

as ¢ — 0, where the constant @ = {3(1—v?)/4} "% Let the corresponding shell elastostatic state be denoted by
{T*(r) e~ *,w*(r) %}, and define the dimensioniess radial co-ordinate £ by

r = R(1+ ). (B2)

Then the real and imaginary parts of the components of w*, t* are given (as ¢ — 0) by

R'R@) = 2—2vée+ O(e?), (B3)
R '3} = —2—«%—(3\(z +5v—8)e+0(e?) (B4)
7 3(1—-w) ’

RRE) = 0 ' (v+2028) V2 + %[15(1 +9)(2—v)E = 30ver?¢?
+ (1 +v)(d8—93v)¢ —203(10+29)]e¥2 + O(?), (BS)
R'30) = 0~ 'Quw*E—v)e!? — a;—;)l [15(1 +v)(2—v)& + 30ver?E?

+(1+v)(E8—93v)¢ +2002(10+29)]e¥2 + O(e7?), (B6)

ET'R(e}) = ~$(1-£)e+ 0D, - (BT
E-13() = 22 (1= 86+ 066, ®9)
E7'R(zh) = 2—1E(5vE2+-3Tv+ 10)e + O(e?), (B9)

4 2 2 2
E'S(thy) = — I—v_% £+ 3—(1%)(3%2 +7v—8)e+0(e?), (B10)
E~'R(th) = —3(5¢*+11)e+0(e?), (B11)

2 2
E-3(ch) = —lff’—vzﬁ g(l—?vT)(3v52+2—v)e+0(52), (B12)

-1

E'R(L) = —do "1 —-E%)e? + 910—(1—52)[5w262+5(1 +v)E+330°]e¥? + 0(e¥?), (B13)

E'S(h) = Jo~'(1—)eV2 4+ %(1—52)[&0252—5(1 +9)E+ 3307672+ 0(e%2). (B14)



